GBCsschenle
 USN

 Sixth Semester B.E. Degree Examination, July/August 2021

 Sixth Semester B.E. Degree Examination, July/August 2021 Microelectronics

 Microelectronics}

15EC655

Time: 3 hrs .
Max. Marks: 80

Note: Answer any FIVE full questions.

1 a. Derive an expression of drain current in NMOS transistor for triode and saturation regions, with necessary diagrams.
(08 Marks)
b. Design the circuit shown in Fig.Q1(b) to obtain a current I_{D} of $80 \mu \mathrm{~A}$. Find the value required for R and find the dc voltage V_{D}. Let the NMOS transistor have $\mathrm{V}_{\mathrm{t}}=0.6 \mathrm{~V}$, $\mu_{\mathrm{n}} \mathrm{Co}_{\mathrm{x}}=200 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{~L}=0.8 \mu \mathrm{~m}$ and $\mathrm{w}=4 \mu \mathrm{~m}$. Neglect the channel-length modulation effect (i.e. assume $\lambda=0$).

Fig.Q1(b)
(04 Marks)
(04 Marks)

2 a. With a neat diagram, explain the operation of enhancement-type NMOS transistor in detail.
(08 Marks)
b. An NMOS transistor is fabricated in a $0.4 \mu \mathrm{~m}$ process having $\mu_{\mathrm{n}} \mathrm{Co}_{\mathrm{x}}=200 \mu \mathrm{~A} / \mathrm{V}^{2}$ and $\mathrm{V}_{\mathrm{A}}^{\prime}=50 \mathrm{~V} / \mu \mathrm{m}$ of channel length. If $\mathrm{L}=0.8 \mu \mathrm{~m}$ and $\mathrm{W}=16 \mu \mathrm{~m}$, find V_{A} and λ. Find the value of I_{D} that results when the device is operated with an overdrive voltage $\mathrm{V}_{\mathrm{OV}}=0.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{DS}}=1 \mathrm{~V}$. Also find the value of r_{0} at this operating point. If V_{DS} is increased by 2 V , what is the corresponding change in I_{D} ?
(08 Marks)
3 a. With a neat diagram, explain the operation of the common-source amplifier. Also derive the expressions for input and output resistance and voltage gain.
(10 Marks)
b. Explain briefly the MOSFET internal capacitances.

4 a. Explain the biasing of MOSFET using constant current source.
(06 Marks)
b. Explain the small signal model of MOSFET and how the T-equivalent circuit model can be obtained.
(06 Marks)
c. A MOSFET is to operate at $I_{D}=0.1 \mathrm{~mA}$ and is to have $g_{m}=1 \mathrm{~mA} / \mathrm{V}$. If $K_{n}^{\prime}=50 \mu \mathrm{~A} / \mathrm{V}^{2}$, find the required (W/L) ratio and the overdrive voltage.
(04 Marks)
5 a. Compare the following characteristics of MOSFET and BJT:
(i) Transconductance g_{m}
(ii) Intrinsic gain A_{0}
(04 Marks)
b. Given $\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$ and using $\mathrm{I}_{\text {Ref }}=100 \mu \mathrm{~A}$, it is required to design the circuit of Fig.Q5(b) to obtain an output current whose nominal value is $100 \mu \mathrm{~A}$. Find R if Q_{1} and Q_{2} are matched and have channel lengths of $1 \mu \mathrm{~m}$, channel widths of $10 \mu \mathrm{~m}, \mathrm{~V}_{\mathrm{t}}=0.7 \mathrm{~V}$, and $\mathrm{K}_{\mathrm{n}}^{\prime}=200 \mu \mathrm{~A} / \mathrm{V}^{2}$. What is the lowest possible value of V_{0} ? Assuming that for this process technology the early voltage $\mathrm{V}_{\mathrm{A}}^{\prime}=20 \mathrm{~V} / \mu \mathrm{m}$, find the output resistance of the current source. Also, find the change in output current resulting from a +1 V change in V_{0}.

Fig.Q5(b)
c. Derive the expression for determining the $3-\mathrm{dB}$ frequency $\left(\omega_{\mathrm{H}}\right)$ of an amplifier.
(06 Marks)
(06 Marks)
6 a. Explain briefly the operation of MOS current steering circuit.
(06 Marks)
b. For the circuit shown in Fig.Q6(b), find the midband voltage gain $A_{m}=V_{0} / V_{\text {sig }}$ and the upper 3-dB frequency f_{H}. Where $\mathrm{R}_{\text {sig }}=100 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{in}}=420 \mathrm{~K} \Omega, \mathrm{C}_{\mathrm{gs}}=\mathrm{C}_{\mathrm{gd}}=1 \mathrm{PF}$, $\mathrm{g}_{\mathrm{m}}=4 \mathrm{~mA} / \mathrm{V}$ and $\mathrm{R}_{\mathrm{L}}^{\prime}=3.33 \mathrm{~K} \Omega$.

Fig.Q6(b)
(06 Marks)
c. The high frequency response of an amplifier is characterized by the transfer function.

$$
\mathrm{F}_{\mathrm{H}}(\mathrm{~s})=\frac{1-\frac{\mathrm{s}}{10^{5}}}{\left(1+\frac{\mathrm{s}}{10^{4}}\right)\left(1+\frac{\mathrm{s}}{4} * 10^{4}\right)}
$$

Determine the $3-\mathrm{dB}$ frequency approximately and exactly.
(04 Marks)
7 a. Explain the high frequency response of the CS amplifier and analyze using Miller's theorem.
b. Consider a common-gate amplifier specified as follows:
$\mathrm{W} / \mathrm{L}=7.2 \mu \mathrm{~m} / 0.36 \mu \mathrm{~m}, \mathrm{~K}_{\mathrm{n}}^{\prime}=387 \mu \mathrm{~A} / \mathrm{V}^{2}, \mathrm{r}_{0}=18 \mathrm{~K} \Omega, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}, \mathrm{~g}_{\mathrm{m}}=1.25 \mathrm{~mA} / \mathrm{V}$, $\mathrm{x}=0.2, \mathrm{R}_{\mathrm{S}}=10 \mathrm{~K} \Omega, \mathrm{R}_{\mathrm{L}}=100 \mathrm{~K} \Omega, \mathrm{Cg}_{\mathrm{s}}=20 \mathrm{fF}, \mathrm{Cg}_{\mathrm{d}}=5 \mathrm{fF}$ and $\mathrm{C}_{\mathrm{L}}=0$. Find $\mathrm{A}_{\mathrm{v}_{\mathrm{o}}}, \mathrm{R}_{\text {in }}, \mathrm{R}_{\text {out }}$, $\mathrm{G}_{\mathrm{v}}, \mathrm{G}_{\mathrm{is}}, \mathrm{G}_{\mathrm{i}}$ and f_{H}.
(08 Marks)
8 a. Explain the operation of MOS cascode amplifier.
(08 Marks)
b. Explain the effect of source resistance on transconductance and voltage gain of a CS amplifier.
(08 Marks)
9 a. Explain the operation of MOS differential pair with a common mode input voltage.
b. Explain the effect of g_{m} mismatch on CMRR of a MOS differential amplifier.

10 a. With a neat diagram, explain the operation of a two-stage CMOS op-amp.
(08 Marks)
b. Obtain the expression for differential gain of the active-loaded MOS pair.

