

Sixth Semester B.E. Degree Examination, July/August 2021 Microelectronics

Time: 3 hrs.

1

Max. Marks: 80

Note: Answer any FIVE full questions.

- a. Derive an expression of drain current in NMOS transistor for triode and saturation regions, with necessary diagrams. (08 Marks)
 - b. Design the circuit shown in Fig.Q1(b) to obtain a current I_D of 80 μ A. Find the value required for R and find the dc voltage V_D. Let the NMOS transistor have V_t = 0.6 V, $\mu_n Co_x = 200 \ \mu A/V^2$, L = 0.8 μ m and w = 4 μ m. Neglect the channel-length modulation effect (i.e. assume $\lambda = 0$).

R

Lot

c. Explain the effect of substrate bias on threshold voltage of MOS transistors. (04 Marks)

Fig.Q1(b)

- 2 a. With a neat diagram, explain the operation of enhancement-type NMOS transistor in detail. (08 Marks)
 - b. An NMOS transistor is fabricated in a 0.4 μ m process having $\mu_n Co_x = 200 \ \mu A/V^2$ and $V'_A = 50 \ V/\mu m$ of channel length. If L = 0.8 μ m and W = 16 μ m, find V_A and λ . Find the value of I_D that results when the device is operated with an overdrive voltage V_{OV} = 0.5 V and V_{DS} = 1V. Also find the value of r₀ at this operating point. If V_{DS} is increased by 2V, what is the corresponding change in I_D? (08 Marks)
 - a. With a neat diagram, explain the operation of the common-source amplifier. Also derive the expressions for input and output resistance and voltage gain. (10 Marks)
 b. Explain brief acts MOSEET interval appreciateness. (10 Marks)
 - b. Explain briefly the MOSFET internal capacitances. (06 Marks)
 - a. Explain the biasing of MOSFET using constant current source. (06 Marks) b Explain the small signal model of MOSFET and how the T-equivalent circuit model can be
 - b. Explain the small signal model of MOSFET and how the T-equivalent circuit model can be obtained. (06 Marks)
 - c. A MOSFET is to operate at $I_D = 0.1$ mA and is to have $g_m = 1$ mA/V. If $K'_n = 50 \mu$ A/V², find the required (W/L) ratio and the overdrive voltage. (04 Marks)
- 5 a. Compare the following characteristics of MOSFET and BJT:
 - (i) Transconductance g_m
 - (ii) Intrinsic gain A_o

(04 Marks)

(04 Marks)

3

4

15EC655

b. Given $V_{DD} = 3V$ and using $I_{Ref} = 100 \ \mu$ A, it is required to design the circuit of Fig.Q5(b) to obtain an output current whose nominal value is 100 μ A. Find R if Q_1 and Q_2 are matched and have channel lengths of 1 μ m, channel widths of 10 μ m, $V_t = 0.7 V$, and $K'_n = 200 \ \mu$ A/V². What is the lowest possible value of V_0 ? Assuming that for this process technology the early voltage $V'_A = 20 \ V/\mu$ m, find the output resistance of the current source. Also, find the change in output current resulting from a +1V change in V_0 .

(06 Marks)

(06 Marks)

- c. Derive the expression for determining the 3-dB frequency ($\omega_{\rm H}$) of an amplifier. (06 Marks)
- 6 a. Explain briefly the operation of MOS current steering circuit. (06 Marks)
 - b. For the circuit shown in Fig.Q6(b), find the midband voltage gain $A_m = V_0/V_{sig}$ and the upper 3-dB frequency f_H . Where $R_{sig} = 100 \text{ K}\Omega$, $R_{in} = 420 \text{ K}\Omega$, $C_{gs} = C_{gd} = 1 \text{ PF}$, $g_m = 4 \text{ mA/V}$ and $R'_I = 3.33 \text{ K}\Omega$.

$$V_{gr}(s) \stackrel{(a)}{=} \frac{1}{2} \stackrel{(a)}{=} \frac{1}{2} \stackrel{(a)}{=} \frac{1}{2} \stackrel{(a)}{=} \stackrel{(a)}{=}$$

c. The high frequency response of an amplifier is characterized by the transfer function.

$$F_{\rm H}(s) = \frac{1 - \frac{s}{10^5}}{\left(1 + \frac{s}{10^4}\right) \left(1 + \frac{s}{4} * 10^4\right)}$$

Determine the 3-dB frequency approximately and exactly. (04 Marks)

- 7 a. Explain the high frequency response of the CS amplifier and analyze using Miller's theorem. (08 Marks)
 - b. Consider a common-gate amplifier specified as follows: $W/L = 7.2 \ \mu m/0.36 \ \mu m$, $K'_n = 387 \ \mu A/V^2$, $r_0 = 18 \ K\Omega$, $I_D = 100 \ \mu A$, $g_m = 1.25 \ m A/V$, $x = 0.2, R_S = 10 \ K\Omega$, $R_L = 100 \ K\Omega$, $Cg_s = 20 f F$, $Cg_d = 5 f F$ and $C_L = 0$. Find A_{V_0} , R_{in} , R_{out} , G_v , G_{is} , G_i and f_H . (08 Marks)
- 8 a. Explain the operation of MOS cascode amplifier. (08 Marks)
 b. Explain the effect of source resistance on transconductance and voltage gain of a CS amplifier. (08 Marks)
- 9 a. Explain the operation of MOS differential pair with a common mode input voltage.
 - b. Explain the effect of g_m mismatch on CMRR of a MOS differential amplifier. (08 Marks) (08 Marks)
- 10 a. With a neat diagram, explain the operation of a two-stage CMOS op-amp.(08 Marks)b. Obtain the expression for differential gain of the active-loaded MOS pair.(08 Marks)